Каримова Идигул Салимовна

Влияние продолжительной почвенной засухи на физиологические процессы у различных сортов и линий хлопчатника

03.00.12-физиология и биохимия растений

Автореферат диссертации на соискание ученой степени кандидата биологических наук

Душанбе- 2009
Работа выполнена в лаборатории биохимии фотосинтеза Института физиологии растений и генетики Академии наук Республики Таджикистан

Научные руководители: доктор биологических наук
Эргашев Абдулложон,
член-корреспондент Академии наук
Республики Таджикистан,
dоктор биологических наук, профессор
Абдулаев Абдуманан

Официальные оппоненты: член-корреспондент Академии наук
Республики Таджикистан,
dоктор биологических наук, профессор
Алиев Курбон Алиевич,
dоктор биологических наук, профессор
Юлдошев Химохиддин Юлдошевич

Ведущая организация: Институт земледелия Таджикской академии сельскохозяйственных наук

Защита состоится "__" __________ 2009 г. в _______ч. на заседании диссертационного совета Д 047. 001.01 при Институте физиологии растений и генетики Академии наук Республики Таджикистан (734063 г. Душанбе, ул. Айни, 299/2, e-mail: asrtkarimov@mail.ru).
С диссертацией можно ознакомиться в Центральной научной библиотеке им. И. Ганди Академии наук Республики Таджикистан.

Автореферат разослан "__" __________ 2009 г.

Ученый секретарь
dиссертационного совета
dоктор биологических наук, доцент Б.Б. Джумаев
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. В последние годы все больше возрастает интерес к изучению физиолого-биохимических процессов у высших растений в стрессовых условиях с целью повышения устойчивости растений к неблагоприятным факторам воздействия (Bohnert, Sheveleva, 1998; Bray et al., 2000; Wang et al., 2003).

В связи с этим изучение действия неблагоприятных факторов внешней среды на физиолого-биохимические процессы растительных организмов стало одним из приоритетных направлений в физиологии и биохимии растений (Альтергот, 1981; Дроздов, Курц, 1984; Verling, Kipfel, 1992; Эрдгашев, 1997; Smirnoff, 1998; Эрдгашев и др., 2004).

Известно, что одним из неблагоприятных факторов для растений является засуха, действие которой приводит к нарушениям синтетической способности растений, распаду белков, к изменениям коллоидно-химического состояния цитоплазмы и, в целом, снижению количества накапливаемого растениями органического вещества (Кузнецов, Дмитриева, 2006; Taiz, Zaiger, 2006).

Поэтому изучение механизмов устойчивости растений к засухе и поиски путей её повышения стали актуальной задачей современного растениеводства. Для более глубокого изучения физиологии устойчивости растений к стрессовым факторам привлекаются различные растительные объекты (Абдуллаев, 1993; Джумаев, 2001; Wang, Baraki, 2003). Одним из объектов, наиболее характерных для республик Центральной Азии, является хлопчатник - свето-теплолюбивое растение с продолжительным вегетационным периодом, отдельные этапы которого в условиях резко континентального климата Таджикистана совпадают с действием высоких экстремальных температур и повышенной атмосферной засухой, которая отрицательно влияет на продуктивность.

Однако влияние нарастающей почвенной засухи на физиолого-биохимические процессы у хлопчатника остается малоизученным. В связи с этим большой интерес представляет исследование влияния засухи на физиолого-биохимические процессы у хлопчатника, особенно в фазах генеративного развития растений.

Результаты этих исследований могут служить теоретической основой для разработки способов регуляции устойчивости хлопчатника к условиям почвенной засухи.

Цель и задачи исследования. Цель настоящей работы состояла в изучении влияния продолжительной почвенной засухи на физиолого-биохимические процессы у хлопчатника различных сортов и линий в период генеративного развития.
В связи с этим были поставлены следующие задачи:
- изучить влияние продолжительной почвенной засухи на рост и развитие хлопчатника различных сортов и линий;
- выявить влияние почвенной засухи на развитие корневой системы;
- изучить некоторые параметры водообмена хлопчатника (интенсивность транспирации, водоудерживающая способность, водный дефицит, осмотическое давление);
- определить содержание хлорофилла, интенсивность реального и потенциального фотосинтеза;
- изучить метаболизм углерода 14C при фотосинтезе;
- определить содержание белков и углеводов в листьях хлопчатника;
- выявить влияние почвенной засухи на биологическую и хозяйственную продуктивность растений хлопчатника.

Начальная новизна и практическая значимость работы. Проведено комплексное исследование влияния продолжительной почвенной засухи на некоторые параметры водообмена, интенсивность реального и потенциального фотосинтеза, содержание хлорофилла, метаболизм углерода 14C при фотосинтезе, содержание азота, растворимых сахаров и крахмала в листьях различных генотипов средневолокнистого хлопчатника. Выявлена взаимосвязь между скоростью транспирации, водоудерживающей способностью, реальным водным дефицитом, осмотическим давлением и концентрацией клеточного сока листьев. Показано, что хронический недостаток почвенной влаги, наряду с другими морфологическими изменениями, приводит к сокращению площади листьев, увеличению удельной поверхностной плотности листа и уменьшению индекса листовой поверхности.

Впервые выявлено, что продолжительная почвенная засуха, наравне с подавлением интенсивности фотосинтеза, приводит к существенным изменениям в скорости и направленности метаболизма углерода 14C при фотосинтезе, снижается скорость включения 14C в ранние продукты восстановительного пентозофосфатного цикла Бенсона - Кальвина и усиливается синтез метаболитов ФЕП- карбоксилирования и гликолатного пути.

Показано, что в условиях водного дефицита соотношение углеводов изменяется - уменьшается содержание крахмала и увеличивается содержание растворимых сахаров.

Установлено, что в условиях продолжительной почвенной засухи существенно уменьшается биологическая и хозяйственная продуктивность растений, снижается число и масса коробочек, полноценных семян, увеличивается количество недоразвитых семян, в конечном итоге падает урожайность хлопка-сырца.
Полученный экспериментальный материал позволит глубже понять механизм действия водного стресса на физиолого-биохимические процессы у хлопчатника и изыскать пути повышения хозяйственной продуктивности хлопчатника в условиях дефицита воды и действия высокой температуры воздуха.

Апробация работы. Материалы диссертации были доложены на: Научной конференции "Вода - основа жизни и человеческого существования" (Душанбе, 2003), Третьей республиканской научной конференции биохимического общества (Душанбе, 2003), Научной конференции, посвященной 70-летию агрономического факультета Таджикского аграрного университета и 80-летию города Душанбе (Душанбе, 2004), Научной конференции "Актуальные проблемы и перспективы развития физиологии растений" (Душанбе, 2004), Республиканской конференции "Адаптационные аспекты функционирования живых систем" (Душанбе, 2007), Республиканской конференции "Экологические особенности биологического разнообразия" (Хорог, 2007), Конференции, посвящённой памяти академика АН Республики Таджикистан Ю.С. Насырова (Душанбе, 2008).

Публикации. По теме диссертации опубликовано 10 работ.

Структура и объём работы. Диссертация состоит из введения, трех глав (обзор литературы; условия, объекты и методы исследований; результаты исследований), заключения, выводов, списка литературы. Диссертация изложена на 129 страницах печатного текста, содержит 25 таблиц, 17 рисунков. Список цитируемой литературы содержит 191 работу.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ГЛАВА 2. Условия, объекты и методы исследований

Объектом для опытов служили районированные сорта средневолокнистого хлопчатника (Gossypium hirsutum L.) Гулистон(селекции Института физиологии растений и генетики Академии наук Республики Таджикистан), Мехрgon и перспективные линии Л-15 и Л-53 (селекции Института земледелия Таджикской академии сельскохозяйственных наук).

Полевые опыты проводились в 2002-2004 гг. на экспериментальном участке Института физиологии растений и генетики Академии наук Республики Таджикистан (г. Душанбе), расположенным в восточной части Гиссарской долины на высоте 834 м над ур.м.оря.

Все эксперименты проводились в основном в фазах от начала цветения до массового плодообразования, так как этот период является
наиболее чувствительным к недостатку воды и растения чаще подвергаются действию водного стресса.

Хлопчатник выращивали в полевых условиях согласно агрорекомендациям Министерства сельского хозяйства Республики Таджикистан (Научно-обоснованная система земледелия Таджикской ССР, 1984). Микрополевые опыты закладывались в трёхкратной повторности на делянках размером 25 м².

Для изучения действия водного стресса, начиная с фазы начала цветения, часть растений не поливалась до фазы созревания (раскрытия коробочек). В течение этого срока через каждые 10 дней отбиралась почвенная проба до глубины 100 см для определения влажности в корнеобитаемой зоне.

Оводненность листа определяли термостатно-весовым методом, образцы листьев высушили при температуре +100…+105°С.

Содержание сырого протеина рассчитывали по величине общего азота (по Кьельдалю), умножая его на коэффициент 6.25.

Все учёты и наблюдения проводили в динамике до начала раскрытия коробочек согласно методике СоюзНИХИ (1973).

ГЛАВА 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

3.1. Влияние почвенної засухи на рост и развитие хлопчатника

Известно, что во всех случаях при недостатке воды (и в сочетании с температурным фактором) происходят серьезные нарушения гомеостаза растительного организма (Кушниренко, Печерская, 1984). В зависимости от силы и продолжительности водного стресса эти сдвиги могут быть обратимыми и необратимыми.

В связи с этим представляло определенный интерес изучение влияния продолжительной (нарастающей) почвенной засухи на прохождение последующих фаз вегетации хлопчатника с начала цветения до раскрытия коробочек.

В условиях недостатка влаги в почве (водный стресс) обнаруживаются значительные морфологические изменения у растения. Если при нормальном (78-80% от ППВ) водоснабжении рост главного стебля достигал у сорта Гулистон 104-112 см, сорта Мехргон - 101-121 см, а у линий Л-15 - 89-110 см, линий Л-53 - 101-126 см, то при недостатке почвенной влаги этот показатель составлял 74-95 см, 74-93 см, 68-74 см, 74-75 см соответственно.

Облиственность растений в условиях стресса также сокращается. Так, при стрессе у сорта Гулистон максимальное количество листьев на одном растении было 25 шт., у Мехргон - 27 шт., у Л-15 - 38 шт., у Л-53 - 28 шт. При оптимальном водном режиме этот показатель у всех изученных сортов составлял в среднем 40-46 шт./растение.

При водном дефиците у всех сортов количество симподиальных ветвей на одном растении заметно сократилось. У сорта Гулистон их было всего 8-9 шт., у Мехргон - 8-9 шт., у Л-15 - 9-10 шт., у Л-53 - 9-10 шт. на одном растении. При нормальном водоснабжении этот показатель увеличивался и составлял 10-11, 10-12, 10-11, 10-13 шт./растение соответственно.

В условиях засухи длина главного корня и суммарная длина боковых корней у всех изученных сортов и линий хлопчатника были больше, чем у контрольных растений. Исключение составили линия Л-53, у которой суммарная длина боковых корней в условиях полива была больше (139 см против 129 см в опытном варианте).

Такое увеличение изученных параметров корневой системы в условиях засухи объясняется тем, что при дефиците влаги в почве на основе гигротропической реакции растений в сторону влажного горизонта почвы происходит больший расход фотосинтетических метаболитов на
рост корневой системы растения, чем для вегетативного роста главного стебля и боковых ветвей. Такая реакция растений возникает, естественно, из-за необходимости сохранения жизнеспособности.

Уровень водообеспеченности корневой зоны оказывает существенное воздействие на длину главного (стержневого) корня и боковых корней растений хлопчатника. Так, при оптимальном водообеспечении длина главного корня у изученных сортов была практически одинакова, за исключением сорта Мехрgon (47 см), и находилась в пределах 60-67 см. Вместе с тем, длина боковых (активных) корней имела значительные сортовые различия. Меньше всего длина боковых корней у сорта Мехрgon (66.5 см), длиннее всех у линии Л-53 (159 см), а у сорта Гулистон и линии Л-15 они оказались практически одинаковыми.

Однако в условиях водного дефицита происходило значительное удлинение главного корня (до 88 см у сорта Мехрgon) и боковых корней (до 179 см у сорта Гулистон). При этом хлопчатник сорта Гулистон имел наибольшую длину боковых корней. Вместе с тем, у растений сорта Мехрgon боковые корни длиннее более чем в два раза по сравнению с оптимальным режимом водоснабжения. Боковые корни линии Л-15 оказались длиннее на более чем 30% против контрольного варианта.

3.2. Водообмен листьев хлопчатника в условиях почвенной засухи

3.2.1. Оvodненность тканей. Полученные нами данные показывают, что у разных сортов и линий хлопчатника при режиме оптимального водоснабжения (78-80% от ППВ) оvodненность листьев в утренние часы (8 ч) находилась в пределах 81-83%, в то время как при дефиците почвенной влаги (54-56% от ППВ) оvodненность тканей листа в эти часы была на уровне 78-79%.

Однако в течение дня в обоих вариантах опыта наблюдалась тенденция уменьшения оvodненности. В 12 ч в контрольном варианте она составляла 79-80%, а при засухе -74-76%. У сортов Гулистон и Мехрgon оvodненность тканей листа оказалась почти одинаковой -74. 6 и 74. 5 % соответственно, а у линии Л-15-75.7%, линии -Л-53-75.8%, т.е. разница между сортами и линиями составляла 1.1-1.3%.

В целом же, по сравнению с утренними часами (исходная оvodненность), содержание воды в тканих листа в варианте с оптимальным водообеспечением в послеполуденное часы (16 ч) уменьшилась на 3.1-5.1%, а при водном дефиците составила 6.7-9.3%.

3.2.2. Водоудерживающая способность листьев. Определение водоудерживающей способности листьев в дневной динамике показало, что в целом по сравнению с оптимальным водообеспечением при водном
дефиците происходили заметные изменения. При почвенной засухе водоудерживающая способность значительно выше - если при засухе потеря воды за один час составляла от 16.3 до 59.0%, то при оптимальном водоснабжении - 31.0-89.3%.

Анализ данных, представленных на рис. 1, показывает, что у сортов Гулистон и Мехргон при оптимальном водообеспечении наблюдалась наибольшая потеря воды - от 50.3 до 89.3% и от 31.0 до 81.0% (соответственно). При этом линия Л-15 имела потери от 33.0 до 70.6%, а линия Л-53 от 38.6 до 69.6%.

Особенно следует отметить то, что если при почвенной засухе растения сортов Гулистон и Мехргон в течение дня теряли от 29.3 до 59.3% воды и от 27.6 до 46.6% соответственно, то линии Л-15 и Л-53 за это же время теряли воду значительно меньше - 17.6-51.6% и 16.3-40.3% соответственно. Это указывает на то, что линии Л-15 и Л-53 отличаются большой водоудерживающей способностью.

3.2.3. Интенсивность транспирации. Как видно из данных, приведенных на рис. 2, уровень водообеспеченностей оказывал существенное влияние на ход транспирации листьев в течение дня. Интенсивность транспирации листьев у изученных сортов и линий в фазе начала цветения при оптимальном водоснабжении оказалась на достаточно высоком уровне - 1.3-5.9 г воды на 1 г сырого веса за 1 ч. При этом наибольшей скоростью испарения воды отличались сорт Гулистон (1.3-5.0 г/г сырого веса ч) и линия Л-15 (1.5-5.9 г/г сырого веса ч).
Рис.1. Дневной ход водоудерживающей способности листьев у хлопчатника в фазу массового плодообразования (% потери воды за 1 ч)

Скорость транспирации листьев у сорта Мехрон и линии Л-53 оказалась несколько ниже (1.3-4.3 г/г сырого веса•ч и 1.5-4.5 г/г сырого веса•ч соответственно). При оптимальном водоснабжении максимальная скорость транспирации приходилась на 10-12 ч.

В условиях дефицита почвенной влаги в период начала цветения скорость транспирации резко снизилась и находилась в пределах 0.54-1.66 г/г сырого веса за 1 ч, это в 1.5-2 раза ниже, чем при оптимальном водоснабжении растений. При водном дефиците дневной ход процесса несколько иной, чем в варианте с оптимальным водоснабжением.

Максимальная интенсивность транспирации наблюдалась с 8 до 10 ч. При этом скорость транспирации у хлопчатника сортов Гулистон и Мехрон в течение всего дня оказалась выше (0.75-1.27 г/г сырого веса за 1 ч и 0.64-1.66 г/г сырого веса за 1 ч соответственно), чем у линий Л-15 и Л-53 (0.60-1.28 г/г сырого веса за 1 ч и 0.55-1.30 г/г сырого веса за 1 ч соответственно).
Рис.2. Дневной ход интенсивности транспирации листьев у хлопчатника в фазу начала цветения

3.2.4. Водный дефицит листа. В фазу массового цветения реальный водный дефицит (РВД) листа в варианте с оптимальным водообесценением находился в пределах 15.3-28.9% (табл.1). Однако этот разброс наблюдался в течение всего дня. В утренние часы дефицит составлял 15.3-16.3%, в полдень -21.7-25.8%, после полудня (16 ч) РВД увеличивался до 25-29%, что в целом является нормальным. Сорт Гулистон по сравнению с другими сортами отличался более высоким уровнем РВД во все часы определения.
Влияние почвенной засухи на динамику реального водного дефицита листа хлопчатника в фазу массового цветения, %

<table>
<thead>
<tr>
<th>Сорт, линия</th>
<th>Время наблюдений</th>
<th>8 ч</th>
<th>12 ч</th>
<th>16 ч</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Контроль (78-80% от ППВ)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Гулистон</td>
<td></td>
<td>16.3±1.5</td>
<td>25.8±1.6</td>
<td>28.9±1.5</td>
</tr>
<tr>
<td>Мехрмон</td>
<td></td>
<td>15.8±1.3</td>
<td>22.5±1.3</td>
<td>25.4±1.7</td>
</tr>
<tr>
<td>Л-15</td>
<td></td>
<td>15.9±1.2</td>
<td>22.6±1.4</td>
<td>26.1±1.3</td>
</tr>
<tr>
<td>Л-53</td>
<td></td>
<td>15.3±1.4</td>
<td>21.7±1.2</td>
<td>25.0±1.5</td>
</tr>
<tr>
<td></td>
<td>Опыт (54-56% от ППВ)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Гулистон</td>
<td></td>
<td>29.4±1.2</td>
<td>34.3±0.6</td>
<td>37.5±1.4</td>
</tr>
<tr>
<td>Мехрмон</td>
<td></td>
<td>26.8±1.3</td>
<td>31.8±0.8</td>
<td>34.5±1.1</td>
</tr>
<tr>
<td>Л-15</td>
<td></td>
<td>26.6±0.8</td>
<td>30.1±0.4</td>
<td>31.8±1.3</td>
</tr>
<tr>
<td>Л-53</td>
<td></td>
<td>26.6±1.6</td>
<td>31.2±1.2</td>
<td>32.3±1.8</td>
</tr>
</tbody>
</table>

Растения, находящиеся в условиях почвенной засухи, отличались высоким уровнем РВД. Так, уровень дефицита составлял от 26.6 до 37.5%. По степени РВД выделялся сорт Гулистон, у которого во все часы измерения РВД оказался выше по сравнению с другими изученными сортами.

Вместе с тем, в условиях почвенной засухи с самого утра РВД значительно больше, чем при оптимальном водоснабжении. Так, в 8 ч при водном стрессе РВД составлял от 20.7 до 27.7%, т.е. на 11-14% выше, чем в контрольном варианте. В полдень разница достигала 10-19%, после полудня - 4.9%. РВД у сорта Гулистон (среднедневной РВД) оказался заметно выше, чем у других изученных сортов и линий. При этом можно видеть, что у линии Л-53 РВД был ниже, чем у других сортов и линий.

Измерение остаточного водного дефицита (ОВД) в течение трёх дней подряд в фазу плодообразования достаточно убедительно показало, что при оптимальном водообеспечении уровень дефицита не превышал 11.8%. Однако и в этом случае у сорта Гулистон остаточный водный дефицит на 1-1.5% больше, чем у других сортов (табл.2).

В условиях пониженной влажности почвы в течение продолжительного времени (20-25 дней) ОВД резко возрастал (более чем в два раза). При этом можно видеть, что растения сортов Гулистон и Мехрмон имели больший ОВД, нежели линии Л-15 и Л-53, с разницей 3-6%. Это наводит на мысль, о том, что эти линии отличаются большим потенциалом адаптивности к длительному водному стрессу, т.е. проявляют большую устойчивость.
3.2.6. Оsmотическое давление и концентрация клеточного сока (ККС). Определение осмотического давления клетки показало, что в зависимости от фазы развития растений и уровня водоснабжения эти показатели подвержены заметным изменениям (табл. 3). Так, если в начале цветения осмотическое давление в контрольном варианте достигало 10.3-11.0 атм., то в фазе формирования коробочек оно повышалось до 12 атм., а в фазе массового плодообразования (начало раскрытия коробочек) падало до 10.0-10.5 атм. В условиях продолжительной почвенной засухи осмотическое давление клетки в фазе начала цветения составило 11.5-12.3 атм., в начале формирования коробочек - 13.4-14.2 атм., а в фазе начала раскрытия коробочек -14.2-15.3 атм.

Таблица 2

<table>
<thead>
<tr>
<th>Сорт, линия</th>
<th>Дата и время наблюдений</th>
<th>Контроль (78-80% от ППВ)</th>
<th>Опыт (54-56% от ППВ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Гулистон</td>
<td>11.4±1.8</td>
<td>10.6±1.3</td>
<td>11.8±1.0</td>
</tr>
<tr>
<td>Мехргон</td>
<td>10.9±1.3</td>
<td>9.1±1.7</td>
<td>9.4±1.2</td>
</tr>
<tr>
<td>Л-15</td>
<td>9.5±1.1</td>
<td>10.0±1.4</td>
<td>10.1±1.3</td>
</tr>
<tr>
<td>Л-53</td>
<td>8.8±1.4</td>
<td>9.2±1.3</td>
<td>9.8±1.5</td>
</tr>
</tbody>
</table>

Таблица 3

Влияние почвенной засухи на концентрацию клеточного сока (% от сухого вещества) и осмотическое давление в листьях хлопчатника в различные фазы вегетации
Изучение дневной динамики осмотического давления клеточного сока в фазе массового плодоношения при двух контрастных режимах водообеспеченения показало, что во все часы определения в условиях почвенной засухи осмотическое давление оказалось выше, чем при нормальном водообеспечении (табл.3). По мере повышения температуры воздуха и солнечной инсоляции осмотическое давление в варианте "Засуха" возрастило от 9.0-9.8 до 12.2-13.8 атм. Такая же закономерность наблюдалась и при оптимальном уровне почвенной влаги, с той лишь разницей, что оно значительно ниже, чем в варианте "Засуха". При этом можно заметить, что во все сроки определения при обоих режимах водообеспечения по этому показателю обнаруживались некоторые сортовые отличия. У сортов Гулистон и Мехрғон осмотическое давление была несколько выше в сравнении с Л-15 и Л-53.

Известно, что концентрация клеточного сока имеет, с одной стороны, прямую и опосредованную связь как с общим содержанием воды, так и со скоростью транспирации, а с другой стороны, со скоростью и направленностью метаболических процессов у растений (Гусев, 1981; Слейчер, 1970). Другие внешние и внутренние факторы также влияют на ККС листа.

Данные, представленные в табл.3, показывают, что у всех изученных сортов и линий хлопчатника с 8 ч до 16 ч происходило повышение ККС. Эта закономерность сохранялась в обоих вариантах выращивания растений. Вместе с тем, в условиях почвенной засухи ККС листа в сравнении с контрольным вариантом была на 4.2-7.3% больше. Особенно это заметно в послеполуденные часы. От фазы начала цветения до начала формирования коробочек ККС возрастила от 13.2-14.6% до 18.6-18.9%, в то время как при засухе составляла 17.0-19.8% и 20.8-23.2%. При этом

<table>
<thead>
<tr>
<th>Сорт, линия</th>
<th>Начало цветения</th>
<th>ККС, %</th>
<th>Начало формирования коробочек</th>
<th>Массовое плодообразование</th>
</tr>
</thead>
<tbody>
<tr>
<td>Гулистон</td>
<td>10.8</td>
<td>14.6</td>
<td>12.0</td>
<td>18.6</td>
</tr>
<tr>
<td>Мехрғон</td>
<td>10.9</td>
<td>15.1</td>
<td>12.0</td>
<td>18.9</td>
</tr>
<tr>
<td>Л-15</td>
<td>10.3</td>
<td>13.2</td>
<td>11.8</td>
<td>18.6</td>
</tr>
<tr>
<td>Л-53</td>
<td>10.4</td>
<td>13.3</td>
<td>11.8</td>
<td>18.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Контроль (78-80% от ППВ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Гулистон</td>
</tr>
<tr>
<td>Мехрғон</td>
</tr>
<tr>
<td>Л-15</td>
</tr>
<tr>
<td>Л-53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Опыт (54-56% от ППВ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Гулистон</td>
</tr>
<tr>
<td>Мехрғон</td>
</tr>
<tr>
<td>Л-15</td>
</tr>
<tr>
<td>Л-53</td>
</tr>
</tbody>
</table>

НСР0.5 = 0.22
следует заметить, что в условиях оптимального водоснабжения ККС в фазе начала раскрытия коробочек снижалась до первоначального уровня.

3.3. Содержание хлорофилла и интенсивность фотосинтеза у хлопчатника в условиях нарастающей почвенной засухи

3.3.1. Содержание хлорофилла. Как видно из табл. 4, содержание хлорофилла "a" и "b" в зависимости от генотипа и условий водоснабжения имели некоторые различия. При расчете содержания зеленых пигментов на единицу сырой массы в условиях оптимального и дефицитного водоснабжения различия между сортами были несущественны. Однако, здесь можно заметить, что при водном стрессе наблюдалась значительное увеличение содержания хлорофилла "a" и относительно меньше - хлорофилла "b". Соответственно сумма хлорофилла "a+b" была больше в оптимальном варианте.

Между сортами по содержанию суммы хлорофиллов выделялась линия Л-53- 2.91 мг/г сырой массы при оптимальном режиме и 3.56 мг/г сырой массы в условиях засухи.

Результаты определений показали, что независимо от сортов и линий содержание хлорофилла "a" по сравнению с хлорофиллом "b" в листьях исследованных растений выше.

Такая же закономерность проявлялась и при расчете содержания хлорофилла на единицу площади листа, но с той лишь разницей, что различия в содержании хлорофилла "a" и "b" и их суммы не столь существенны, как при расчете на единицу сырой массы листа (табл. 4).

Вместе с тем, при расчете содержания хлорофилла на единицу сухой массы листьев обнаружилась несколько иная картина. Данные табл. 4 показывают, что по содержанию хлорофилла "a" и "b" между сортами и линиями в фазе цветения практически нет существенной разницы. Однако в условиях засухи больше всего хлорофилла "a" и "b" содержалось у линии Л-53. Следует отметить, что и по содержанию хлорофилла "b" в варианте с оптимальным водоснабжением этот сорт имел преимущество перед другими изученными сортообразцами. Почти такая же закономерность наблюдалась и в фазе плодоношения. Самое высокое содержание хлорофилла было у линии Л-15 (14.1 мг/г сухой массы). Однако по сумме хлорофиллов в условиях засухи сорта Гулiston и Мехрон уступали линиям Л-15 и Л-53.

Можно видеть, что с наступлением фазы массового плодообразования и начала раскрытия коробочек действие засухи на содержание зеленых пигментов несколько ослабевало. Так, по сравнению с контрольными растениями (оптимальное водоснабжение) под воздействием длительной засухи сумма хлорофиллов увеличивалась.
независимо от сортовых различий. Однако и здесь можно заметить, что более существенное повышение содержания хлорофиллов имело место у сорта Мехрмон и линии Л-15.

Таблица 4

<table>
<thead>
<tr>
<th>Сорт</th>
<th>Вариант</th>
<th>мг/г сырой массы</th>
<th>мг/г сухой массы</th>
</tr>
</thead>
<tbody>
<tr>
<td>Гулистон</td>
<td>контроль</td>
<td>2.3</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>опыт</td>
<td>3.0</td>
<td>0.31</td>
</tr>
<tr>
<td>Мехрмон</td>
<td>контроль</td>
<td>2.3</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>опыт</td>
<td>2.9</td>
<td>0.44</td>
</tr>
<tr>
<td>Л-15</td>
<td>контроль</td>
<td>2.2</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>опыт</td>
<td>2.9</td>
<td>0.66</td>
</tr>
<tr>
<td>Л-53</td>
<td>контроль</td>
<td>2.3</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>опыт</td>
<td>2.9</td>
<td>0.61</td>
</tr>
<tr>
<td>ИСР0,5=</td>
<td></td>
<td>0.18</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Примечание: контроль - 78- 80% от ППВ,
опыт -54-56% от ППВ.

Одной из возможных причин такого эффекта засухи на содержание суммы зеленых пигментов при расчете на сырую массу и площадь листьев, на наш взгляд, является сокращение размера клеток листа в условиях водного дефицита (Крамер, Козловский, 1981), т.е. происходит увеличение числа клеток на единицу площади (или массы). С другой стороны, снижение содержания суммы хлорофиллов в варианте "Засуха" при расчете на единицу сухой массы объясняется разным содержанием сухого вещества в одной клетке.
3.3.2. Интенсивность фотосинтеза. Измерение интенсивности видимого фотосинтеза листьев различных сортов и линий хлопчатника в фазе плодоношения при двух контрастных условиях водообеспечения растений показало, что ассимиляционная способность листьев между изученными вариантами опыта оказалась различной (рис. 3). Так, скорость фотосинтетической ассимиляции CO_2 в утренние часы (8-9 ч) в варианте "Засуха" несколько выше, чем при оптимальном водоснабжении, а между сортами и линиями разница в эти часы несущественная.

Рис. 3. Дневные изменения интенсивности видимого фотосинтеза у хлопчатника в фазе плодоношения
При недостаточном водообеспечении в 10 ч наступал первый дневной максимум интенсивности видимого фотосинтеза. В утренние часы сорт Мехргон отличался наибольшей фотосинтетической способностью (41.9 мгСО₂/дм²·ч), а другие сорта и линии имели более близкую по значению интенсивность фотосинтеза. Во все остальное время дня при почвенной засухе ассимиляционная способность листьев у всех изученных сортов и линий была заметно ниже по сравнению с оптимальным водообеспечением.

Однако, между сортами и линиями обнаружены некоторые различия. Например, у сорта Гулистон скорость видимого фотосинтеза в 10 и 14 ч падала более, чем на 28%, у сорта Мехргон - на 18%, у линии Л-53 - на 25%. Вместе с тем, линии Л-15 и Л-53 в 12 и 16 ч при обоих режимах водообеспечения практически имели более высокую скорость ассимиляции СО₂.

В обоих вариантах водооснабжения растений падение интенсивности фотосинтеза наблюдалось после 12 ч. Максимальные величины интенсивности фотосинтеза при нормальном водообеспечении регистрировались в 12 ч, а наибольшей скоростью ассимиляции СО₂ отличалась линия Л-15 (31,7 мг СО₂/дм²·ч). После полудня (14 ч) в варианте "Засуха" наступало значительное снижение скорости фотосинтеза, вплоть до 18 ч. У сортов Гулистон и Мехргон это падение составляла более чем 70%, у линии Л-15 - почти 50%, у линии Л-53 - более 57%. Вместе с тем, можно видеть, что в сравнении с оптимальным водообеспечением ассимиляционная способность листьев у сортов Гулистон и Мехргон при дефиците влаги была заметно ниже (примерно на 30% и 48% соответственно).

Аналогичная закономерность установлена при измерении дневных изменений потенциальной интенсивности фотосинтеза. Максимальные их величины в контрольном и опытном вариантах наблюдались в утренние часы - между 8-10 ч. При этом в варианте с оптимальным водооснабжением наибольшей потенциальной интенсивности фотосинтеза отличались линии Л-53 и Л-15, что особенно четко проявлялось в послеполуденные часы (14 и 16 ч). Вместе с тем, в отличие от потенциальной интенсивности фотосинтеза, дневной максимум видимого фотосинтеза приходился на более поздние часы (12 ч).

Несколько иная картина выявлена в условиях хронического дефицита почвенной влаги. Потенциальная интенсивность фотосинтеза у хлопчатника сорта Мехргон и линий Л-15 и Л-53 в период с 8 ч до 14 ч была выше по сравнению с сортом Гулистон. Однако в 16 ч потенциальная интенсивность фотосинтеза у сорта Мехргон и линии Л-53 заметно падала.
3.3.3. Распределение меченого углерода среди продуктов фотосинтеза. Известно, что интенсивность фотосинтеза и характер фотосинтетического метаболизма углерода зависят как от генотипических особенностей растений, так и комплекса внешних факторов, (Тарчевский, 1980; Абдулаев, 2001). Для раскрытия механизмов этих процессов используют различные методы и приемы, и одним из доступных подходов является воздействие на растения почвенной засухи.

Изучение скорости включения 14C в ранние продукты фотосинтеза показало, что основными продуктами фотосинтеза у всех сортов и линий хлопчатника являются интермедиаты восстановительного пентозофосфатного цикла (ВПФЦ) (рис 4). Например, у линии Л-15 в продуктах восстановительного пентозофосфатного цикла обнаружено около 39% радиоактивности, гликолатного пути - 8.3, ФЕП-карбоксилирования -11.5%, в углеводах - около 32% и в прочих соединениях примерно 10%.

Сорт Мехргон заметно отличался от сорта Гулистон по характеру включения 14C в продукты фотосинтеза. Так, около 31% метки обнаружено в продуктах ВПФЦ, 13.4% в соединениях гликолатного пути углерода, 12.5% в продуктах ФЕП - карбоксилирования, в углеводах - 20.6%, а в прочих соединениях - 22.7%.

Характер включения меченого углерода в продукты фотосинтеза и под воздействием почвенной засухи оказался различным (рис.4). У линии Л-15, Л-53 и сорта Гулистон наблюдалось заметное повышение радиоактивности в углеводах-до 40.6%. Под воздействием почвенной засухи у линии Л-15 активизировалось включение 14C в сахарозу, глицерин, серин, аланин, глицират и мальят. При этом происходило подавление включения 14C в ФЭС, ФГК и гликогал.

Вместе с тем, у линии Л-53 при водном стрессе наблюдалось существенное ускорение включения 14C только лишь в сахарозу и резкое снижение радиоактивности в ФГК и в меньшей степени в ФЭС, медленное включение 14C в глицират и аспартат.

В отличие от линий Л-15 и Л-53 у сорта Гулистон при водном дефиците наблюдалось значительное ускорение биосинтеза глицирата, фруктозы и глюкозы, в то время как у контрольных растений в этих соединениях меченый углерод был обнаружен в следовых количествах. В то же время под воздействием почвенной засухи у этих генотипов радиоактивность сахарозы, ФГК, аланина и гликолата заметно уменьшилась.

Таким образом, анализ полученных результатов по влиянию продолжительной почвенной засухи на интенсивность фотосинтеза и скорость включения 14C в продукты фотосинтеза хлопчатника показал,
что водный стресс как весьма сильный экологический фактор приводит к существенному изменению не только интенсивности фотосинтеза, но и направленности и скорости фотосintéтического метаболизма.

В целом, почвенная засуха, изменяя морфологию куста и листа (низкий рост и мелкие листья), оказывает существенное влияние на дневную динамику ассимиляции CO₂ и метabolизм \(^{14}\)С при фотосинтезе. При этом, проявляются некоторые генотипические различия в распределении поглощенного углерода и их дальнейшей метаболизации в условиях засухи.
Рис. 4. Влияние засухи на распределение 14C среди продуктов фотосинтеза у разных сортов и линий хлопчатника. а - контроль; б- опыт.
1-интермедиаты ВПФ цикла Кальвина, 2-углеводы, 3-продукты гликолятного метаболизма, 4-продукты ФЕП - карбоксилирования, 5- прочие продукты.
3.5. Влияние засухи на содержание общего азота и протеина и углеводов в листьях хлопчатника

3.5.1. Содержание общего азота и суммарного протеина. В фазе интенсивного плодоношения изучали содержание общего азота и протеина в листьях в зависимости от воздействия продолжительной почвенной засухи (табл.5).

Влияние почвенной засухи на содержание общего азота и протеина в листьях хлопчатника в фазе созревания

<table>
<thead>
<tr>
<th>Сорт, линия</th>
<th>Вариант опыта</th>
<th>Общий азот, % от сухого вещества</th>
<th>Снижение, %</th>
<th>Содержание сырого протеина, (х 6,25)</th>
<th>Снижение, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Гулистон</td>
<td>1</td>
<td>4.32</td>
<td>2.44</td>
<td>27.05</td>
<td>15.25</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Мехргон</td>
<td>1</td>
<td>4.72</td>
<td>2.36</td>
<td>29.50</td>
<td>14.74</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Л-15</td>
<td>1</td>
<td>4.22</td>
<td>2.76</td>
<td>24.53</td>
<td>16.06</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Л-53</td>
<td>1</td>
<td>4.84</td>
<td>2.96</td>
<td>25.77</td>
<td>15.76</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Примечание 1-контроль - 78-80% от ППВ, 2-опыт - 54-56% от ППВ.

Полученные результаты показывают, что почвенная засуха приводит к нарушению азотного метаболизма в листьях растений хлопчатника. Обнаружено, что если в опытных растениях (в условиях засухи) содержание общего азота и протеина в листьях изученных растений варьировала от 1.76 до 2.44% и 16.6-15.3% соответственно, то в контрольных (в условиях оптимального полива) в пределах 3.32-4.32 и 24.3-27.8% общего азота и протеина соответственно.

Однако уровень различных этих показателей у изученных сортов в зависимости от их генотипических особенностей между двумя вариантами опыта был не одинаков. Наибольшее различие обнаружено по сорту Гулистон (разница по протеину 11.8%), наименьшее - по сорту Мехргон (2.3% протеина). Сорта хлопчатника Л-53 и Л-15 на почвенную засуху реагировали почти одинаково, разница составляла 3.5 и 3.0% протеина соответственно. Эти результаты показывают, что хлопчатник сорта Гулистон очень чувствителен и более подвержен воздействию почвенной засухи, и у хлопчатника этого сорта происходит более сильный распад белковых веществ. При этом сравнительно меньший
распад белковых веществ в листьях хлопчатника сорта Мехргон даёт основание считать, что он является более засухоустойчивым.

Определение содержания общего азота и протеина в листьях хлопчатника в критические периоды развития позволяют использовать эти показатели как диагностический индекс при селекции на засухоустойчивость сортов хлопчатника.

3.5.2. Содержание растворимых сахаров. В табл. 6 приведены данные по влиянию почвенной засухи на отдельные компоненты растворимых сахаров в листьях изученных сортов и линий хлопчатника в фазе начала раскрытия коробочек. Как видно из таблицы, более 90% суммы сахаров составили сахароза и глюкоза, в то же время доля сахарозы была на 8-10% больше, чем глюкозы. Из общего количества редуцирующих (восстанавливавших) сахаров фруктоза составила лишь 10-13%.

Таблица 6
Влияние почвенной засухи на содержание растворимых сахаров в листьях хлопчатника в фазе начала раскрытия коробочек (мг/г сухой массы)

<table>
<thead>
<tr>
<th>Сорт, линия</th>
<th>Восстанавливующие сахара</th>
<th>Фруктоза</th>
<th>Глюкоза</th>
<th>Сахароза</th>
<th>Сумма растворимых сахаров</th>
</tr>
</thead>
<tbody>
<tr>
<td>Контроль (78-80% от ППВ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Гулистон</td>
<td>35.2</td>
<td>9.2</td>
<td>26.9</td>
<td>35.5</td>
<td>70.7</td>
</tr>
<tr>
<td>Мехргон</td>
<td>36.4</td>
<td>9.0</td>
<td>27.4</td>
<td>36.8</td>
<td>73.2</td>
</tr>
<tr>
<td>Л-15</td>
<td>36.8</td>
<td>6.1</td>
<td>30.7</td>
<td>35.1</td>
<td>71.9</td>
</tr>
<tr>
<td>Л-53</td>
<td>38.5</td>
<td>6.3</td>
<td>32.2</td>
<td>36.0</td>
<td>74.5</td>
</tr>
<tr>
<td>Опыт (54-56% от ППВ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Гулистон</td>
<td>46.8</td>
<td>9.7</td>
<td>37.1</td>
<td>48.7</td>
<td>95.5</td>
</tr>
<tr>
<td>Мехргон</td>
<td>49.2</td>
<td>9.6</td>
<td>39.6</td>
<td>46.6</td>
<td>95.8</td>
</tr>
<tr>
<td>Л-15</td>
<td>42.6</td>
<td>6.7</td>
<td>35.9</td>
<td>39.2</td>
<td>81.8</td>
</tr>
<tr>
<td>Л-53</td>
<td>43.7</td>
<td>7.1</td>
<td>36.6</td>
<td>41.3</td>
<td>85.0</td>
</tr>
</tbody>
</table>

HСП₀.₅ = 0.08

Режим влажности почвы внес заметные изменения в содержание растворимых сахаров в листьях. Установлено увеличение содержания растворимых углеводов в условиях засухи. Это происходило в основном за счет существенного повышения содержания глюкозы и сахарозы. Содержание фруктозы в общей сумме редуцирующих сахаров было незначительным, хотя и наблюдалась тенденция повышения ее содержания при почвенной засуке.

По мере формирования коробочек и старения растений происходит, естественно, усиление оттока растворимых сахаров в аттрактирующие центры (коробочки). Об этом свидетельствует постепенное снижение в листьях как содержания восстанавливавших сахаров, так и общей суммы всех растворимых сахаров. С другой стороны, сравнительно высокое
содержание растворимых сахаров в листьях в условиях водного стресса объясняется, по-видимому, тем, что при засухе активность гидролитических ферментов, деполимеризующих полисахариды, в т.ч. крахмала, возрастает, а это, в свою очередь, приводит к увеличению содержания редуцирующих сахаров.

3.5.3. Содержание крахмала. Данные, представленные на рис. 5, показывают, что содержание крахмала в листьях изученных сортов и линий средневолокнистого хлопчатника в зависимости от условий водоснабжения и фаз развития заметно изменялось. Так, в фазе цветения и начала формирования первых коробочек содержание крахмала было сравнительно больше, чем в фазах массового плодообразования и созревания коробочек. И по мере старения листьев во всех случаях наблюдалось постепенное снижение содержания крахмала. Размах изменчивости содержания крахмала составил от 22.7 до 42.3 мкг/г сухой массы. Вместе с тем, высокое содержание крахмала наблюдалось в фазах цветения и начале формирования коробочек, а в фазе созревания коробочек - спад его содержания.

Можно заметить, что на всех этапах генеративного развития в условиях недостатка почвенной влаги содержание крахмала в листьях значительно падало.

Снижение интенсивности фотосинтеза и синтеза сахарозы и повышение содержания гексоз может привести к повышению осмотического давления и появленнию более значительных водоудерживающих сил в клетках листьев (Альтергот, Игнатьев, 1976).

Содержание крахмала и растворимых углеводов в растительной ткани во многом определяется интенсивностью фотосинтеза и активностью потребляющих органов, оно уменьшается при низкой интенсивности фотосинтеза или усиленном росте, увеличивается при торможении последнего и повышенной фиксации СО₂ при фотосинтезе (Мокроносов, 1978).
Таким образом, полученные результаты показали, что почвенная засуха приводит к изменению содержания углеводов, главным образом сахарозы и крахмала.

Однако степень воздействия водного дефицита и ответная реакция растений на него в зависимости от фазы развития не являются идентичными. Этим можно объяснить неравнозначные количественные изменения содержания крахмала у изученных генотипов хлопчатника в двух контрастных условиях водоснабжения.

Рис. 5. Влияние засухи на содержание крахмала в листьях хлопчатника в фазе цветения -плодоношения

3.6. Биологическая и хозяйственная продуктивность

Распределение сухой биомассы по органам растений хлопчатника у изученных сортов и линий в зависимости от их генотипических особенностей и стрессовых условий (засуха) было разным. В условиях засухи изменялись биометрические параметры у хлопчатника. По многим изученным морфобиологическим показателям в условиях засухи величина биомассы снижалась почти в два раза.

При засухе масса сухого вещества стебля, листьев, черешков была значительно меньше, чем при оптимальном водном режиме почвы, при этом также обнаружены некоторые сортовые различия по этим признакам. На дату конечного учета по количеству коробочек между сортами наблюдался некоторый разброс. Однако, при водном стрессе общее число коробочек, в том числе раскрытых, оказалось заметно меньше, чем при оптимальном водообеспечении. Вместе с тем, особо следует подчеркнуть то, что у линий Л-15 и Л-53 по сравнению с сортами Гулистон и Мехргон при водном стрессе формировалось больше коробочек.

Кроме того, число раскрытых коробочек также оказалось значительно больше у этих двух линий, нежели у сортов Гулистон и Мехргон. Такая же закономерность выявлена по массе хлопка-сырца на одно растение - очевидно явное преимущество линий Л-15 и Л-53 перед сортами Гулистон и Мехргон.
Корневая масса хлопчатника изученных сортов при оптимальном водобезопечении оказалась различной. При этом наибольшая масса корней была у хлопчатника сорта Мехрегон и линии Л-15, меньшая - у сорта Гулистон. Вместе с тем, в стрессовых условиях масса корней сорта Мехрегон и линии Л-15 сократилась почти в два раза, а у сорта Гулистон и линии Л-53 всего на 25%.

Почвенная засуха, воздействуя угнетающе на растения, вызывает замедление многих метаболических реакций и ростовых процессов (Генкель, 1982). Такая закономерность выявлена и в наших опытах. В условиях засухи резко замедлялись почти все изученные процессы в растениях, по сравнению с растениями, выращенными в условиях оптимального водоснабжения. Исключение составили растения хлопчатника линий Л-15 и Л-53. Они по отдельным морфобиологическим показателям (особенно по массе створок раскрыты коробочек и урожаю хлопка-сырца (г/растение) превосходили растения, выращенные в условиях нормального полива.

Уровень водобезопечения растений в период формирования репродуктивных органов оказывает существенное влияние на индекс листовой поверхности (ИЛП) и удельную поверхностную плотность листа (УППЛ).

Данные табл.7 показывают, что в условиях достаточного водобезопечения ИЛП посева изученных сортов и линий средневолокнистого хлопчатника находился на одном уровне и составлял 4.25-4.39 м²/м². При дефиците почвенной влаги ИЛП посева у всех сортов и линий сокращался (на 10.3-12%). Особенно заметно это происходило у сорта Мехрегон, на 16.6%.

<table>
<thead>
<tr>
<th>Сорт, линия</th>
<th>Контроль (78-80% от ППВ)</th>
<th>Опыт (54-56 % от ППВ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ИЛП</td>
<td>УППЛ</td>
</tr>
<tr>
<td>Гулистон</td>
<td>4.25±0.16</td>
<td>0.701±0.06</td>
</tr>
<tr>
<td>Мехрегон</td>
<td>4.34±0.14</td>
<td>0.756±0.07</td>
</tr>
<tr>
<td>Л-15</td>
<td>4.39±0.18</td>
<td>0.784±0.05</td>
</tr>
<tr>
<td>Л-53</td>
<td>4.36±0.12</td>
<td>0.792±0.07</td>
</tr>
</tbody>
</table>

УППЛ листа при оптимальном водном режиме находилась в пределах 0.701-0.792 г/дм², однако в условиях засухи УППЛ заметно увеличивалась у всех изученных сортов и линий хлопчатника. Однако у сортов Гулистон
и Мехргон этот показатель был на 12-16.6% больше в сравнении с контрольным вариантом.

При недостатке почвенной влажности в период генеративного развития растений происходили существенные изменения в перераспределении сухой биомассы у изученных сортов и линий хлопчатника.

В фазе созревания коробочек (50%-е раскрытие) основную долю биомассы составлял хлопок-сырец - от 39.2 до 45.6%, стебли - 13.4 - 21.4% и створки раскрытых коробочек - 12.0-19.6%. При этом доля листьев достигала 10-13%, корней - 6.3-7.5%, симподиальных ветвей - 4.9-7.1%, черешков - 1.5-2.4%.

В зависимости от условий водоснабжения происходили заметные изменения в процессе формирования и сохранения плодовых элементов растений хлопчатника. Так, при оптимальном водообеспечении общее число сформировавшихся плодоэлементов составило 42.4-45.0 шт./растение, а при водном стрессе - 38.7-40.4 шт./растение. При этом в контролльном варианте число сохранившихся полноценных коробочек составило 11.4-14.1 шт./растение, а в условиях почвенной засухи - 9.3-12.2 шт./растение, т.е. наблюдалось уменьшение количества коробочек.

При высоком потенциале продуктивности в варианте с оптимальным водоснабжением (по общему числу образовавшихся плодоэлементов) наблюдался сравнительно высокий уровень опадения бутонов (38.2-45.6%), а при водном стрессе он составлял 31.3-34.4%. По опадению завязей и коробочек, наоборот - в условиях засухи оно увеличивалось до 35-45%, а при оптимальном режиме составило всего 25.8-33.2%. Наблюдались некоторые сортовые различия. У линий Л-15 и Л-53 опадение завязей достигло 32-33% в условиях засухи, а при оптимальном режиме водообеспечения было на уровне 25%, у сортов Гулистон и Мехргон опадение завязей находилось в пределах 28-32.2% при достаточном водоснабжении, при водном дефиците оно достигло 38.6-40.0%.

Данные табл.8 показывают, что водный стресс оказывал существенное влияние на формирование параметров хозяйственной продуктивности хлопчатника. Повсенная засуха приводила к уменьшению количества полноценных коробочек у всех изученных сортов и линий. Однако при большем потенциале продуктивности линий Л-15 и Л-53 число коробочек при засухе уменьшалось на 11.0 и 13.5 % соответственно, а у сортов Гулистон и Мехргон только на 8.6 и 10.6% соответственно.

Вместе с тем, масса хлопка-сырца одной коробочки и масса 1000 семян в условиях засухи в сравнении с оптимальными условиями
водоснабжения снижались у сортов Гулистон и Мехргон в большей степени, нежели у линий Л-15 и Л-53. Более стабильным оказался показатель "Масса 1000 семян", хотя при почвенной засухе также наблюдалось уменьшение массы семян на 2-4% в сравнении с контрольным вариантом.

Таблица 8

Влияние почвенной засухи на параметры хозяйственной продуктивности хлопчатника

<table>
<thead>
<tr>
<th>Сорт, линия</th>
<th>Вариант опыта</th>
<th>Количество коробочек на одном растении, шт.</th>
<th>Масса хлопка-сырца одной коробочки, г</th>
<th>Масса 1000 семян, г</th>
<th>Урожайность хлопка-сырца, г/растение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Гулистон</td>
<td>1</td>
<td>10.4</td>
<td>5.5</td>
<td>106.3</td>
<td>35.8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9.3</td>
<td>4.6</td>
<td>102.5</td>
<td>28.6</td>
</tr>
<tr>
<td>Мехргон</td>
<td>1</td>
<td>10.5</td>
<td>5.6</td>
<td>106.8</td>
<td>36.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9.6</td>
<td>4.6</td>
<td>102.8</td>
<td>29.0</td>
</tr>
<tr>
<td>Л-15</td>
<td>1</td>
<td>13.6</td>
<td>5.8</td>
<td>107.4</td>
<td>38.9</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12.1</td>
<td>4.8</td>
<td>105.1</td>
<td>31.7</td>
</tr>
<tr>
<td>Л-53</td>
<td>1</td>
<td>14.1</td>
<td>5.8</td>
<td>108.0</td>
<td>38.8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12.2</td>
<td>4.9</td>
<td>105.4</td>
<td>32.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>НСР0,5= 1.45</td>
</tr>
</tbody>
</table>

Примечание: 1 - контроль -78-80 % от ППВ, 2 - опыт -54-56 % от ППВ.

Логически можно было ожидать, что все эти изменения в варианте "Засуха" обусловили уменьшение общей урожайности хлопка-сырца у всех изученных сортов. При этом у сортов Гулистон и Мехргон снижение урожайности составило 20.1 и 20.8%, а у линий Л-15 и Л-53 18.5 и 17.3% соответственно. К тому же условия водоснабжения оказали существенное влияние на долевое распределение волокна. В режиме оптимального водоснабжения по всем изученным сортам и линиям доля хлопкового волокна от массы хлопка-сырца составила 37.5-37.9%, при заметном преимуществе сортов Гулистон и Мехргон. Однако при дефиците влаги в почве более заметное снижение выхода волокна наблюдалось у сортов Гулистон и Мехргон (34.6-34.9%), а у линий Л-15 и Л-53 снижение было менее значительным. Доля семян в общей массе хлопка-сырца составила 62.1-65.4%. Вместе с тем, при оптимальном водоснабжении доля семян у линий Л-53 была почти на 1,5-2% больше, чем у сортов Гулистон и Мехргон. В варианте "Засуха" доля семян в общей массе хлопка-сырца составила 64.8-65.4% и между сортами и линиями существенной разницы не наблюдалось.
ВЫВОДЫ

1. В условиях дефицита почвенной влаги у растений хлопчатника наблюдается высокая интенсивность транспирации в ранние утренние часы и резкий спад в полуденные и послеполуденные часы, при этом водоудерживающая способность листьев повышается почти на 30%. Реальный водный дефицит при недостатке почвенной влаги достигает 35-37%, осмотическое давление возрастает до 14 атм., тургесцентность тканей снижается до 57%, концентрация клеточного сока увеличивается до 24%.

2. Скорость и динамика параметров водного обмена у изученных сортов и линий средневолокнистого хлопчатника при действии почвенной засухи не одинаковы. Дневная динамика интенсивности транспирации у линий Л-15 и Л-53 характеризуется одновершинной кривой, величина реального водного дефицита варьирует в пределах от 26.6% до 37.5%, величина остаточного водного дефицита - от 19.6 до 26.8%, а у сортов Гулистон и Мехропон она составила от 24.0% до 26.8%.

3. Под воздействием водного стресса (почвенная засуха) содержание суммы зеленых пигментов при расчете на сырой массу и единицу площади листа возрастает, а при расчете на сухую массу, наоборот, снижается. Интенсивность реального и потенциального фотосинтеза при хроническом недостатке воды снижается, особенно заметно в послеполуденные часы.

4. Продолжительная почвенная засуха приводит к существенным изменениям в скорости и направленности метаболизма углерода - 14С при фотосинтезе: у линий Л-15, Л-53 и сорта Гулистон наблюдается заметное повышение радиоактивности в углеводах, незначительное ускорение включения 14С в продукты ФЕП- карбоксилирования и гликолатного пути. Вместе с тем, обнаружено снижение радиоактивности в раних продуктах восстановительного пентозофосфатного цикла (fosфорные эфиры сахаров). При этом изменяется соотношение продуктов альтернативных путей фиксации CO2 (продукты гликолатного пути) и восстановительного пентозофосфатного цикла Кальвина. У сорта Мехропон в условиях засухи значительное количество радиоактивности обнаруживается в продуктах восстановительного пентозофосфатного цикла (33.9%) и в меньшей степени в растворимых углеводах (22.7 %).

5. Дефицит почвенной влаги, изменяя скорость и направленность ферментативных процессов, приводит к качественным и количественным изменениям содержания углеводов и азотсодержащих веществ в листьях. Под воздействием засухи происходит снижение содержания крахмала и
накопление редуцирующих сахаров. В условиях недостатка воды снижается содержание общего азота и протеина.

6. В условиях продолжительной почвенной засухи у хлопчатника всех изученных сортов и линий происходит сокращение площади листьев и увеличение удельной поверхностной плотности листа. Падает биологическая и хозяйственная продуктивность: уменьшается число и масса коробочек, число и масса полноценных семян, увеличивается количество недоразвитых семян ("улюк"), все это приводит к снижению урожайности хлопка-сырца на 17.3-20.8 %.

7. Такие показатели, как водный дефицит, остаточный водный дефицит, соотношение содержания крахмала и растворимых сахаров, удельная поверхностная плотность листа и концентрация клеточного сока можно использовать в качестве тест-признаков (индикаторов) для оценки степени устойчивости хлопчатника к почвенной засухе.

СПИСОК ОПУБЛИКОВАННЫХ РАБОТ

7. Эргашев А., Каримова И. Динамика листовой поверхности и водный обмен пшеницы и хлопчатника, выращенных в течение вегетации при разных условиях водообеспечения//Мат. Третьей республиканской конференции "Экологические особенности биологического разнообразия". Хорог, 2007.C.257-259.